Tuesday, August 23, 2016

On Generator Functions, Yield and Return

Here's the question, lightly edited to remove the garbage. (Sometimes I'm charitable and call it "rambling". Today, I'm not feeling charitable about the garbage writing style filled with strange assumptions instead of questions.)

someone asked if you could have both a yield and a return in the same ... function/iterator. There was debate and the senior people said, let's actually write code. They wrote code and proved that couldn't have both a yield and a return in the same ... function/iterator. .... 
The meeting moved on w/out anyone asking the why question. Why doesn't it make sense to have both a yield and a return. ...

The impact of the yield statement can be confusing. Writing code to mess around with it was somehow unhelpful. And the shocking "proved that couldn't have both a yield and a return in the same ... function" is a serious problem.

(Or a seriously incorrect summary of the conversation; a very real possibility considering the garbage-encrusted email. Or a sign that Python 3 isn't widely-enough used and the emil omitted this essential fact. And yes, I'm being overly sensitive to the garbage. But there's a better way to come to grips with reality and it involves asking questions and parsing details instead of repeating assumptions and writing garbage.)

An example

>>> def silly(n, stop=None):
 for i in range(n):
  if i == stop: return
  yield i

>>> list(silly(5))
[0, 1, 2, 3, 4]
>>> list(silly(5, stop=3))
[0, 1, 2]

This works in both Python 3.5.1 and 2.7.10.

Some discussion

A definition with no yield is a conventional function: the parameters from some domain are mapped to a return value in some range. Each mapping is a single evaluation of the function with concrete argument values.

A definition with a yield statement becomes an iterable generator of (potentially) multiple values. The return statement changes its behavior slightly. It no longer defines the one (and only) return value. In a generator function (one that has a yield) the return statement can be thought of as if it raised the StopIteration exception as a way to exit from the generator.

As can be seen in the example above, both statements are in one function. They both work to provide expected semantics.

The code which gets an error is this:

>>> def silly(n, stop=3):
...     for i in range(n):
...         if i == step: return "boom!"
...         yield i

The "why?" question is should -- perhaps -- be obvious at this point.  The return raises an exception; it doesn't provide a value.

The topic, however, remains troubling. The phrase "have both a yield and a return" is bothersome because it fails to recognize that the yield statement has a special role. The yield statement transforms the semantics of the function to make it into a different object with similar syntax.

It's not a matter of having them "both". It's matter of having a return in a generator. This is an entirely separate and trivial-to-answer question.

A Long Useless Rant

The email seems to contain an implicit assumption. It's the notion that programming language semantics are subtle and slippery things. And even "senior people" can't get it right. Because all programming languages (other then the email sender's personal favorite) are inherently confusing. The confusion cannot be avoided.

There are times when programming language semantics are confusing.  For example, the ++ operator in C is confusing. Nothing can be done about that. The original definition was tied to the PDP-11 machine instructions. Since then... Well.... Aspects of the generated code are formally undefined.  Many languages have one or more places where the semantics are "undefined" or only defined by example.

This is not one of those times.

Here's the real problem I have with the garbage aspect of the email.

If you bring personal baggage to the conversation -- i.e., assumptions based on a comparison between some other language and Python -- confusion will erupt all over the place. Languages are different. Concepts don't map from language to language very well. Yes, there are simple abstract principles which have different concrete realizations in different languages. But among the various concrete realizations, there may not be a simple mapping.

It's essential to discard all knowledge of all previous favorite programming languages when learning a new language.

I'll repeat that for the author of the email.

Don't Go To The Well With A Full Bucket.

You won't get anything.

In this specific case, the notion of "function" in Python is expanded to include two superficially similar things. The syntax is nearly identical. But the behaviors are remarkably different. It's essential to grasp the idea that the two things are different, and can't be casually lumped together as "function/iterator".

The crux of the email appears to be a failure to get the Python language rules in a profound way. 

No comments:

Post a Comment